Throttling numbers for cop vs gambler

James Lin
Carl Joshua Quines
Espen Slettnes
Mentor: Dr. Jesse Geneson
May 19-20, 2018 MIT PRIMES Conference

Cop vs robber

- Game played on a simple, connected graph
- Two players: cop and robber.
- First, the cop picks a vertex, then the robber picks a vertex.

- They take turns, either moving to an adjacent vertex or staying put.

Cop vs robber

- The cop wins if she can "capture" robber by moving to same vertex.

- Here, the cop wins next turn.

More cops

- Sometimes one cop is enough to capture the robber, but not always.

More cops

- But if there are more cops, they can always guarantee capture, no matter what the robber does.

- Since we can place cops on every vertex, there's a minimum number of cops such that they always win.

Cop number

Definition (Cop number)

The cop number of a graph is the minimum number of cops needed to guarantee they win, no matter what the robber does.

- If one only cares about resources and not time, the cop number is a good way to measure the "cost" of capturing the robber.
- Later on we will see a way to incorporate both types of cost into our cost function.

Example

- Paths, complete graphs, and trees have a cop number of 1 .
- Cycles of length at least four have a cop number of 2.

Meyniel's conjecture

Conjecture (Meyniel's conjecture)

The maximum cop number of a graph with n vertices is $O(\sqrt{n})$.

- The $O(\sqrt{n})$ here means the cop number can be at most $2 \sqrt{n}$, or $100 \sqrt{n}$, or $k \sqrt{n}$ for some constant k.
- It's sharp: there are graphs of projective planes with cop number at least $\sqrt{\frac{n}{8}}$.
- It's notoriously hard: it's been conjectured since 1985, and we haven't even proved the cop number is $O\left(n^{1-\epsilon}\right)$ for a fixed $\epsilon>0$.

Capture time

- Consider the minimum time it takes to guarantee capturing the robber.
- If we place a cop on the edge of a path with length n, it takes at most n turns.

Capture time

- But we can make it smaller if we place it in the middle instead.

- Here, we can guarantee capture in $\left\lceil\frac{n-1}{2}\right\rceil$ turns.
- So for one cop, the minimum guaranteed capture time is $\left\lceil\frac{n-1}{2}\right\rceil$.

Capture time

- If we had two cops and place them like this:

- No matter what the robber picks, it will take at most $\left\lceil\frac{n-2}{4}\right\rceil$ turns.
- It turns out this is optimal: for two cops, the minimum guaranteed capture time is $\left\lceil\frac{n-2}{4}\right\rceil$.

Capture time

- There's a tradeoff: the more cops we have, the faster it takes to capture the robber.
- For the path, if we had one cop, the capture time is $\frac{n}{2}$.

- If we had $\left\lfloor\frac{n}{2}\right\rfloor$ cops, the capture time is 1 .

- We want a kind of balance: a small number of cops, plus a quick capture time.

Cop-throttling number

Definition (Cop-throttling number)

The cop-throttling number of a graph is the minimum of $k+$ capt $_{k}$, where capt $_{k}$ is the minimum guaranteed capture time of k cops.

- The k and capt ${ }_{k}$ terms can be thought of as resources and time, respectively.
- Their sum gives a way to evaluate the "cost" of a strategy, where we have to balance time against resources.

Example (Throttling number for the path)

For a path with n vertices, if you have k cops, the minimum guaranteed capture time is $\left\lceil\frac{n-k}{2 k}\right\rceil$. By the AM-GM inequality, for some k,

$$
\sqrt{2 n}-\frac{1}{2}<k+\left\lceil\frac{n-k}{2 k}\right\rceil<\sqrt{2 n}+\frac{1}{2}
$$

Cop-throttling number

Conjecture

The maximum cop-throttling number of a graph with n vertices is $O(\sqrt{n})$.

- We've just seen this is true for the path.
- If this was true, then Meyniel's conjecture has to be true as well, as the cop-throttling number is larger than the cop number.
- Unfortunately, this is false: some graphs have a cop-throttling number of at least $k n^{\frac{2}{3}}$ for some k.
- But it turns out this conjecture is true if we replace the robber with a "random" kind of robber...

Cop vs gambler

- The cop and gambler game is played in rounds, not alternating turns.
- In the first round the cop picks any vertex and goes there.
- The gambler picks a probability distribution over the vertices, and goes to a vertex chosen by this distribution.

Cop vs gambler

- In each subsequent round, the cop moves along an edge or stays put, and simultaneously, the gambler goes to a vertex chosen by his distribution.

Cop vs gambler

- Cop wants to minimize the expected (average) capture time, while gambler wants to maximize.

Cop vs gambler

- In the unknown gambler, the cop doesn't know the distribution chosen by the gambler.
- In the known gambler, the cop does.
- In the known gambler, the cop can guarantee an expected capture time of at most n.
- The gambler can guarantee an expected capture time of at least n (with the uniform distribution).
- In the unknown gambler, the cop can guarantee an expected capture time of at most 1.95335 n.

Gambling Throttling Numbers

Definition (Gambler throttling numbers)

The known gambler throttling number of a graph is the minimum of $k+$ capt $_{k}$, where capt ${ }_{k}$ is the expected capture time of the known gambler with k cops. The unknown gambler throttling number is defined similarly.

Example

- The known gambler throttling number of a graph with a Hamiltonian path is in the range $[2 \sqrt{n},\lceil 2 \sqrt{n}\rceil]$.
- The upper bound can be achieved when \sqrt{n} cops patrol evenly distributed chunks along the path.
- For $n \gg 1$, the unknown gambler throttling number of a graph with a Hamiltonian cycle is in the range $[2 \sqrt{n}, 2.0804 \sqrt{n})$.
- The upper bound can be achieved when \sqrt{n} cops remain evenly distributed around the cycle.
- The lower bounds can be achieved when the gambler uses the uniform distribution.

Main Result

Theorem

The (un)known gambler throttling number of a graph with $n \gg 1$ vertices is between $2 \sqrt{n}$ and $3.96944 \sqrt{n}$.

- The known and unknown gambler throttling numbers grow with $n^{\frac{1}{2}}$ on all families of graphs.
- Compare with cop throttling number for the robber, which can grow with $\Omega\left(n^{\frac{2}{3}}\right)$.

Future research

The current constants for the (un)known gambler throttling number in front of \sqrt{n} are 2 and 3.96944. Further research may include:

- Tightening these constants for the known and/or unknown gambler on general graphs,
- Finding them for specific graphs,
- Studying throttling for other adversaries.

Acknowledgments

Thanks to:

- Our mentor Dr. Jesse Geneson, who introduced us to this topic, and for providing guidance throughout the project.
- Dr. Tanya Khovanova, Dr. Slava Gerovitch, Dr. Pavel Etingof, the MIT Math Department, and the MIT PRIMES program, for providing us with the opportunity to work on this project.
- You, for listening.

